

django-tastypie-mongoengine’s documentation

This Django application provides MongoEngine [http://mongoengine.org/] support for Tastypie [https://github.com/toastdriven/django-tastypie].

Contents

	Installation

	Tests

	Usage
	Simple Example

	EmbeddedDocument

	Related and Embedded Fields

	Polymorphism

Source Code and Issue Tracker

For development GitHub [https://github.com/] is used, so source code and issue tracker is found
there [https://github.com/wlanslovenija/django-tastypie-mongoengine].

Indices and tables

	Index

	Search Page

Installation

Using pip [http://pypi.python.org/pypi/pip] simply by doing:

pip install django-tastypie-mongoengine

or by installing from source with:

python setup.py install

In your settings.py add tastypie and tastypie_mongoengine to INSTALLED_APPS:

INSTALLED_APPS += (
 'tastypie',
 'tastypie_mongoengine',
)

You must also connect MongoEngine [http://readthedocs.org/docs/mongoengine-odm/en/latest/django.html] to the database:

MONGO_DATABASE_NAME = 'database'

import mongoengine
mongoengine.connect(MONGO_DATABASE_NAME)

Tests

You can run tests by doing:

./setup.py test

This will install necessary dependencies as well. In tests subdirectory there is a testing Django project with tests. You can check it to for usage examples, as well.

To test different versions at the same time, Travis CI [https://github.com/wlanslovenija/django-tastypie-mongoengine] is used.

Usage

Usage for simple cases is very similar as with Tastypie. You should read
their tutorial [http://django-tastypie.readthedocs.org/en/latest/tutorial.html] first.

The main difference is when you are defining API resource files. There you must
use MongoEngineResource instead of ModelResource.

Simple Example

from tastypie import authorization
from tastypie_mongoengine import resources
from test_app import documents

class PersonResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.Person.objects.all()
 allowed_methods = ('get', 'post', 'put', 'delete')
 authorization = authorization.Authorization()

Defining fields

Most document fields are automatically mapped to corresponding Tastypie fields
but some are not. Of course, you can also manually define (override) those
automatically mapped fields if, for example, you want to define some read-only.

Warning

When manually defining resource fields be careful to properly map
MongoEngine attributes to Tastypie attributes. For example, required
and null attributes are inversed in meaning, but both are by default
False.

Warning

When manually defining resource fields be careful not to forget to set
attribute to document’s field name. It is not set automatically and
if it is not set it is assumed that you will be processing this field
manually (in for example, resource’s hydrate method).

Some fields cannot be mapped automatically so you have to define them manually. Like related and embedded
fields, but special fields like SequenceField [https://mongoengine-odm.readthedocs.org/en/latest/apireference.html#mongoengine.fields.SequenceField] as well:

sequence_field = tastypie_fields.IntegerField(attribute='sequence_field')

EmbeddedDocument

When you are using EmbeddedDocument in your MongoEngine documents, you must define object_class
in Meta class of your resource declaration instead of queryset:

class EmbeddedPersonResource(resources.MongoEngineResource):
 class Meta:
 object_class = documents.EmbeddedPerson
 ...

When you are using normal MongoEngine Document you can use queryset or object_class.

Related and Embedded Fields

Related and embedded fields have to be defined manually always.

ReferenceField

from tastypie_mongoengine import fields

class CustomerResource(resources.MongoEngineResource):
 person = fields.ReferenceField(to='test_project.test_app.api.resources.PersonResource', attribute='person', full=True)
 ...

EmbeddedDocumentField

Embeds a resource inside another resource just like you do in MongoEngine:

from tastypie_mongoengine import fields

class EmbeddedDocumentFieldTestResource(resources.MongoEngineResource):
 customer = fields.EmbeddedDocumentField(embedded='test_project.test_app.api.resources.EmbeddedPersonResource', attribute='customer')
 ...

EmbeddedListField

If you are using ListField containing a EmbeddedDocumentField in
MongoEngine document, it should be mapped to EmbeddedListField:

from tastypie_mongoengine import fields

class EmbeddedListFieldTestResource(resources.MongoEngineResource):
 embeddedlist = fields.EmbeddedListField(of='test_project.test_app.api.resources.EmbeddedPersonResource', attribute='embeddedlist', full=True, null=True)
 ...

EmbeddedListField also exposes its embedded documents as subresources, so
you can access them directly. For example, URI of the first element of the list
above could be
/api/v1/embeddedlistfieldtest/4fb88d7549902817fe000000/embeddedlist/0/. You
can also manipulate subresources in the same manner as resources themselves.

ReferencedListField

If you are using ListField containing a ReferenceField in
MongoEngine document, it should be mapped to ReferencedListField:

from tastypie_mongoengine import fields

class ReferencedListFieldTestResource(resources.MongoEngineResource):
 referencedlist = fields.ReferencedListField(of='test_project.test_app.api.resources.PersonResource', attribute='referencedlist', full=True, null=True)
 ...

Polymorphism

MongoEngine supports document inheritance and you can normally add such
inherited documents to your RESTful API. But sometimes it is useful to have
only one API endpoint for family of documents so that they are all listed
together but that you can still create different variations of the document. To
enable this, you have to define mapping between types and resources. For
example, if documents are defined as:

class Person(mongoengine.Document):
 meta = {
 'allow_inheritance': True,
 }

 name = mongoengine.StringField(max_length=200, required=True)
 optional = mongoengine.StringField(max_length=200, required=False)

class StrangePerson(Person):
 strange = mongoengine.StringField(max_length=100, required=True)

You might define your resources as:

class StrangePersonResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.StrangePerson.objects.all()

class PersonResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.Person.objects.all()
 allowed_methods = ('get', 'post', 'put', 'patch', 'delete')
 authorization = authorization.Authorization()

 polymorphic = {
 'person': 'self',
 'strangeperson': StrangePersonResource,
 }

Use self keyword to refer back to the current (main) resource.
Authorization and other similar parameters are still taken from the main
resource.

Then, when you want to use some other type than default, you should pass it as
an additional parameter type to Content-Type in your payload request:

Content-Type: application/json; type=strangeperson

Alternatively, you can pass a query string parameter.

All this works also for embedded documents in list.

Polymorphic resource_uri

By default, polymorphic resources are exposed through the API with a common
resource_uri.

In the previous case, PersonResource and StrangePersonResource are both
exposed through the /<api_version>/person/ resource URI.

But in some cases, you may want to expose your resources through the polymorphic
resource uri.
To use this behaviour, you should set the prefer_polymorphic_resource_uri
meta variable to True.

You might define your resources as:

class IndividualResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.Individual.objects.all()
 allowed_methods = ('get', 'post', 'put', 'patch', 'delete')
 authorization = tastypie_authorization.Authorization()
 paginator_class = paginator.Paginator

class CompanyResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.Company.objects.all()
 allowed_methods = ('get', 'post', 'put', 'patch', 'delete')
 authorization = tastypie_authorization.Authorization()
 paginator_class = paginator.Paginator

class ContactResource(resources.MongoEngineResource):
 class Meta:
 queryset = documents.Contact.objects.all()
 allowed_methods = ('get', 'post', 'put', 'patch', 'delete')
 authorization = tastypie_authorization.Authorization()

 prefer_polymorphic_resource_uri = True
 polymorphic = {
 'individual': IndividualResource,
 'company': CompanyResource,
 }

You might now reference both resources:

class ContactGroupResource(resources.MongoEngineResource):
 contacts = fields.ReferencedListField(of='test_project.test_app.api.resources.ContactResource', attribute='contacts', null=True)

 class Meta:
 queryset = documents.ContactGroup.objects.all()
 allowed_methods = ('get', 'post', 'put', 'patch', 'delete')
 authorization = tastypie_authorization.Authorization()

And for each contact listed, the:

	IndividualResource would be dehydrated to /<api_version>/individual/<id>/

	CompanyResource to /<api_version>/company/<id>/

Warning

The ContactResource could not be registered but be careful to register
all the resources present in the polymorphic dict otherwise the
dehydrated resource_uri will point to the parent resource.

Index

 nav.xhtml

 Table of Contents

 		django-tastypie-mongoengine's documentation

 		Installation

 		Tests

 		Usage

 		Simple Example

 		Defining fields

 		EmbeddedDocument

 		Related and Embedded Fields

 		ReferenceField

 		EmbeddedDocumentField

 		EmbeddedListField

 		ReferencedListField

 		Polymorphism

 		Polymorphic resource_uri

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

